PHYSICAL REVIEW E VOLUME 54, NUMBER 1 JULY 1996

Continuum deposition of hot dimers in one dimension

Daniel H. Linares and Victor D. Pere;?ra
Department of Physics, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina
(Received 8 November 1995

We study the one-dimensional hot dimer adsorpt{pDA) process in the continuum. Hot dimers are
molecules that dissociate instantaneously after adsorption and the resulting monomers undergo a ballistic flight
up to a distanc® from the deposition place. We analyze the kinetics and jamming via rate equations for the
gap density distribution in the special caRe- o (the radius of the dimer and by means of Monte Carlo
simulation for generdR. The jamming density reveals an interesting dependence on the dissociative separation
distance R, where discontinuities appear f&=o,20,30, . .. ,no with n = integer.
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I. INTRODUCTION annihilation A+ A—0) and the coalescencé ¢ A—A) re-
actions of “hot” species.
The deposition(or adsorptioh of particles on solid sur- Motivated by this vivid interest in the study of this find-

faces is a subject of considerable practical importance. Iing, it is instructive to extend the analysis of the hot dimer
many experiments on adhesion of colloidal particles and proadsorption to the continuum deposition. A previous study of
teins on solid substrates, the relaxation time scales are mudhe continuum deposition has been introduced in RE3],
longer than the times of the formation of the deposit. A wellhowever the result is restricted only to very large values of
known example of an irreversible monolayer deposition proR (R—=). _ » .

cess is the random sequential adsorptRBA). This process The analysis of the continuum deposition for finite values

is well described in the literature and has been investigate@f R iS not straighforward, because of the infinite hierarchies
extensively in recent yeafd —7]. of coupled integro-differential equation for the gaps distribu-

. - ; jon density.
On the other _hand, recent scanning tnneling mlcroscopy In this W)grk we study, by means of the Monte Carlo simu-
(STM) observationg8,9] of a.d Sorpt".’T‘ of @ on Al(11]) lation and(under certain conditionsan analytical approach,
have shown that, under certain conditions, oxygen molecul

o . " . Cthe hot dimers adsorption in the continuum for finite values
striking the metal surface not only dissociate instansta-

neously upon adsorption, but dissipate part of their excess g gutiine of the rest of the paper is as follows. First, we
energy in degrees of fre_edom parallel to the surface. As_ﬁescribe the model and the general equation that governs the
consequence, the resulting monomers fly apart up to a digjnetics of the process. In this section we obtain, as an ex-
tanceR before being immobily adsorbed. The experimentamme, the set of rate equations for the special case of
has shown that for a temperatufe=300 K, the traveling R=g and their numerical solution. After that, the Monte
distanceR is, on the average, approximately 40 A for eachCarlo simulation scheme is introduced and the continuum
monomer. limit approximation is discussed. Finally we present the con-

This interesting process has been described by using th&usions.
random sequential adsorption mod&D—-19. Monte Carlo
simulations have been performed to analyze the one- and
two-dimensional2D) hot dimer adsorptiof10,11] and the
results show that both the kinetics and the saturation state are As we described in Ref12], the adsorption of hot dimers
strongly dependent oR. The analytical treatment of this is a dissociative adsorption process determined by two well
dissociative adsorption process has been done ifl2[13. definite steps(a) the deposition of the dimer in at least two

Numerical simulation has shown that the hot dimerempty sites, angb) after each successful deposition attempt
mechanism considerably enhances the rate of @©duc- the dimer breaks up “instantaneously” in two monomers
tion in the catalyzed oxidation of carbon monox[dd]. The that fly up to certain fixed distande (in term of the lattice
influence of such an adsorption mechanism has also beaonstant If during the flight one monomer hits another ad-
used to analyze the critical behavior in the monomer-dimeparticle or cluster of particles that is already at rest, the flying
irreversible phase transitidi.5]. monomer is frozen at the collision poifgite).

Recently, Mendes and Stinchcomlded] presented a one- Based upon this particular dissociative adsorption pro-
dimensional exact solution for the dissociative adsorption otess, we can extend the model for the adsorption in the con-
dimers, allowing reaction between them. They analyzed thé&nuum.

Our model considers the deposition of hot dimers in a
one-dimensional infinite line lattice with periodic boundary
*Author to whom correspondence should be addressed. condition. The length covered by the dimer is taken equal to

Il. THE MODEL
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20, where o is the length covered by one monomer. The I:l:l

dimers arrive randomly at the line at a rateper unit time

per unit length. If an incoming dimer is blocked by an ad- | -2 |

sorbed adparticle, it is removed, otherwise the deposition is ' !

successful. After deposition in a free region, the dimer v [ N

breaks up instantaneously and each remaining part flies apart a) \/ T 70

up to a certain distand®. If during the flight one monomer

hits another adparticle that is already at rest on the surface, | ll

the flying monomer is frozen at the collision point. The : g R

deposition mechanism seems to be, in some aspect, similar to NI I | fo

the deposition of rolling spheres on the line; such a process b) 700

has been analyzed by Viet al.[20]. However, the similar-

ity is restricted to the fact that, in both cases, particles move = 1 |ustration of the deposition process) The incoming

ipstantanep_usly from the Qriginal landing point to the deﬁm'dimer of size 2r (hereo=1) arrives at the line and its center is

tive deposition or adsorption place. _ ~ deposited in thel(-2) possible place(b) The destruction of a
The kinetics of the HDA process is monitored following given gap of length >2 can be followed by the creation of one

the time evolution ofGg(l,t)dl, which represents the num- inner gap of length &1,<2R limited by the monomers and up to

ber density of gaps with length betwekand| +dl at time  two more gaps(in the figure we show only onewith length

t, for a given value oR. The number density of gaps per O<I,. Note that one of the monomers in the figure travels a dis-

4 7 s g PSS %

unit length is given by tanceé<R.
t)= wG | dl 1 the probability of an incoming dimer to fall in a gap of
MR(t)= 0 Rl Odl, @ lengthl<2¢ is strictly zero, such gaps are always created in

the HDA process. However, we have to distinguish three
where, for convenience, we have introduced the dimensiordifferent possibilities:(i) gaps of length =2g, (ii) gaps of
less variables=owt, | =1/o, andGgr=0Gg. length betweerr<1<20, and, finally,(iii) gaps of length
The density is also related to the fraction of the covered<o. In the case(i) the number of gaps of lengtho2is
surface, i.e., the fraction of the line covered by the particleshighly increased for small integer values of the parameter
R/o. The reason for such an effect will be discussed below.
_ * According to the definition of our model, the kinetics of
pr(D=1- fo IGR(l,1)dl. ) the process is given by the time evolution Gk(l,t). To
illustrate the method, we present in the rest of the section the
Due to the nature of the deposition process, that is, onderivation of the rate equations and their numerical solution
monomer can hit another adparticle or cluster of adparticlefor one particular casé&y=o. To simplify the treatment, we
and each gap does not correspond necessarily to one partict®nsider, in what follows, that the radius of the dimer takes
we havepg(t) # ng(t). the valueo= 1. From the argument described below, we ob-
The rate equations of the gap distribution function can beain the following set of coupled equations:
written in a closed form by considering all the ways in which 46010
intervals may be created or destroyed during the hot dimef@G,(l,t) , ,
deposition process. For a given interv@ap of length dt = _Z)G"(I’t)+2J,+3G”(I ndlt - (1>2),
I>20, the available length for the insertigdeposition of a (39
dimer is the inner interval of length- 20 (step a, see Fig.
1(a). A number of different situations appear due to the fact dG,(1) o
that, after deposition, each monomer flies up to a fixed dis- a L (I'=4)G,(I",tHdl" (1=2), (3b
tanceR (step B. As a consequence, the ways of creation and
destruction of the gaps depend on the relation betvirand 4G, (I,t)
the length of a given galh see Fig. 1b). For large values of —r
R (R—), the destruction of a gap of lengtk 20, is fol- dt
lowed by the creation of a unique inner gap of length -
| -20, independent of the value d¢fand the place of the +4f G, (I",tdl" (1<1<2), (30
deposition of the dimer. In the other extreme, the case I+3
R=0, we have the classical “car parking probleni21], 4G.(1.0)
where the jamming density is well known oAbl , ,
po()=0.747598. For finite values &+ 0, the destruction dt =1G,(l +2’t)+2ﬁ+36”(| Ddl" - (0<I<1).
of a given gap of lengti>2¢, can be followed by the (3d)
creation of one inner gap limited by the monomers and up to
two more gaps, between the monomers and the particles or Equation(3a) describes the time evolution of the gap dis-
clusters of particles which are already at rest. In the last casérjbution function for gaps with length>2. These gaps are
the number of ways of creation of the gaps with lengthdestroyed by the deposition of a dimer in the2 possible
I’<I depend on the relation betweemndR and the place inner place. The creation of such gaps is described by the
of the deposition of the dimer. On the other hand, given thasecond term in the right-hand side of the equation. The factor

©

1+3
G (1", t)dl’

=(2-1NG (I+21)+2
1+2

oo
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of 2 in the creation term reflects the two possibilities of 1.0
breaking a larger interval by inserting a dimer. 1
Equation(3b) represents the evolution of the gap distribu- 0.8
tion function, for a gap of size exactly 2. Due to the fact that . ]
the flight distance of each monomer is between 0 and L 06
R(R=1), the gaps of size exactly 2 are always created in the =) ]
process by the gaps with length between 4 ande, pro- . 0.4
vided that the incoming dimer falls in an inner interval, O ]
which is located at a distance 2 from one of the borders of 0.24
this gap. There aré’ —4 possibilities to fall in such an in-
terval. It is clear that the probability to destroy the gaps of 0.0J

length exactly 2 is strictly 0.

Equation (3c) considers the time evolution of the gaps
with length between (&£1<2). The first term on the right-
hand side of the equation takes into account the creation of o _ )
these gaps due to the deposition of the incoming dimer in a FIG. 2. Gaps distribution function(GDF) H;(t) and density
gap with lengthl + 2, provided that the center of the dimer ps(t), as a fun_ctlon_ of time foR= o The numerical so'lutlons of
falls in an interval of length 2 | located at a distance of 1 of the rate equationgline) compare with Monte Carlo simulations
the border. The next term is due to the contribution of the(SY™P0!S-
gaps with length betweeh+2 and|+ 3; the factor of 2
reflects the two possibilities that the dimer falls in this gap.

The last term of this equation has a factor of 4, which de- .
notes the four deposition possibilities in gaps with length Hs(t)=2f F(pe 2du  (1=2), (7b)
bigger thanl + 3. 0

Finally, we have the evolution of the gaps smaller than 1.
In this case the contribution of the gaps with length2 is
reflected in the first term of the right-hand side of Egd),
where the factot represents the probability that the incom-

Ho(t)=F(t)(2t+1) (1>2), (79

t
Hy(t)= JOMF(M)[2(1+M+37“)| 1(1,2,p)

ing dimer falls in these gaps. The following term is given by —pla(L2u)]du (1<1<2), (70)
the contribution of the gaps with length bigger tHan3. :

In order to solve the previous set of coupled integro- H.(t ZJ E 26 41.(0.1
differential equations, we use the standard procedure devel- 2t o’u (w)[2e #11(0.1n)

oped in Ref[1]. The solution can be obtained by considering
first the interval larger than 2. Inserting the following ansatz +plp(0,1p)]dp (0<I<1), (7d)
for G,(1.t) in Eq. (3a), wherel (a,b,t) is defined as
G,(I,0)=F(t)t?e 72t (1>2), (4) b
In(a,b,t)=f I"e~"tdl. (8)
and replacing the expresion &f,(1,t) in Egs.(3b), (3¢), and a
(3d), we can obtain the following expression for the com-

plete set of equations: To calculate the density we use the expression given in

Eqg. (2). Then we have

G, (1,t)= J;me-zﬂdﬂ 1=2, (3 Po()=1=[Ho() +H(O) +Hi() +Ho(0].  (9)

In Fig. 2 we show the numerical solution for the density
and the fraction of the uncovered surfa¢gt) as a function

t
Gg(l,t):f uF(p)e "2(1+pu+e ®) —luldu of time t (line) compare with the Monte Carlo simulation
0 results(doty. The simulation procedure is described in the
(1<1<2), (5b) ~ hext section. We can observe an excellent agreement be-

tween both methods. The jamming density is obtained by
¢ solving numerically Eq.(9) for very large values of
GU(I,t)=f ue 'M(2e F+lp)du  (0<I<1), (500 t(t—=); the result isp,(*)=1/2.
0 The asymptotic approach to the saturation density is
shown in Fig. 3, and we can observe that the dependence of

whereF(t) is given by p()—p,(t) is proportional tot~* as in the clasical con-
. L, tinuum depositiorf1]. We can conclude that the asymptotic
F(t)=e 2/ol(1-e*)/nldu (6)  behavior does not depend on the “hot” adsorption mecha-

nism. In principle, the general solution could be obtained by
We can calculate, by using the expressiorisgf1,t) , the  solving the set of coupled integro-differential equations
corresponding fraction of the line uncovered by particleswhich governed the time evolution &g(l,t), however, it is
H,(t), which is independent df, as necessary to derive a different set of equations for each in-
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t 102102101 10° 10" 102 10°

FIG. 3. Asymptotic regime approach fB= o. The slope of the

curvext~ ! does not depend on the hot adsorption mechanism. FIG. 4. Time dependence of the density for the daseo and

for different values ok (k= 2, 4, 8, 16, 32, 64, 128, 256, 51T he
terval defined by successive integer valuesRbtr. As a  topmost datum is 2, and the lower data set corresponds to the de-
consequence, the treatment of the problem by solving thereasingk values. The dashed curve corresponds to the “off-
rate equation for larger values Bf o becomes impractical. lattice” simulation. We can clearly observe the jamming siate
For this reason we have used the Monte Carlo simulations, 46w corresponding t,(x)=0.5 andply(=) =0.7999 for large
an alternative, to analyze the process for genBral values ofk.

the continuum the probability to cover the gaps diminishes,
but is always finite. As a consequence, in the approach to the

The Monte Carlo simulation of the “hot” dimer deposi- asymptotic limit ¢—) there is, always, a crossover be-
tion in the continuum is analyzed by using the standard protween the jamming density corresponding to the continuum
cedure described in Rg#]. For the continuum deposition of pr(*) and the jamming density obtained in the limit proce-
the dimer of size &, on a 1D line with periodic boundary dure ps(); see F|g 4. We can see in Fig. 5 that for the
condition, it is convenient to introduce the correspond|ng|amm|ng denS|tpr(00) plotted vs 1K for different values
lattice model, where the dimer is replaced by ak-:faer.” of R, it is possible to observe th@f,;(oc) is independent of
Thus, we introduce a lattice of spacibg=o/k, and allow k, for large values of this parameter.
deposition only at sites where the incoming particle will co- The second jamming state is produced by the lattice
incide exactly with the underlying lattice, coveringkb  aproximation in the limit procedure, and only for integer
units. The deposition frequency per site willlwe The depo- values ofR/o(R#0) is the effect present. This is because
sition attempts are successful if the incoming particles do nobnly in this case is the formation of gaps of size exactly
overlap any particles already in the deposit. Each successf@kb possible. We can conclude that this “jamming state” is
deposition attempt of thek2mers is followed by an instan- a finite size effect due to the fact that in our limit procedure,
taneous fragmentation in two parts of lendh and each of for any finite value of the parametds, we have a finite
them flies up to a certain distanBe as we described above. probability to cover the gap of siz&®, no matter how large
In the limit k—«~ (b—0), we obtain the continuum deposi-
tion. In our simulation, we keep themer notation as before

IIl. MONTE CARLO SIMULATION SCHEME

and define the dimensionless tirtre wo't. In the hot depo- 1.00 e _ :

sition we also observe that the jamming coverage, in the l o« R=Eo |
lattice, approached exponentially for large tirheOn the 0954 m R=26 i
other hand, for the continuum we have observed that in the | ¢ R=3c ]
asymptotic limit the jamming density approached as a "35> 0904 a4 R=4c . i
power-law, <t 1. The crossover between these two behav- §, | o w m w = = " 4 8
iors is similar to the classical RSA problem and is not ana- *‘D: 0851 , u a a 4 A R i
lyzed in this work. An interesting feature, which is only a o ] o o o 6 o @ * o
characteristic of the hot dimer deposition mechanism, ap- 0.80 4 o °* i
pears in the approximation to the continuum limkt—). | ¢

In the filling process, the early depositions determine a 0.75 N —
strongly correlated configuration. In fact, at the beginning of 103 102 107" 100
the process, most of the dimers arrive at the empty line, and 1/k

after fragmentation each monomer flies up to exactly a dis-

tance ofR, independently ok, increasing the population of

gaps by exactly R. In the case oR=kb, the size of these FIG. 5. Size dependence of the second jamming density
gaps coincides with the size of the dimer. The probability topk(«) plotted vs 1k for different values of the paramet®& We

cover such empty gaps of exactlkl2 (the size of the dimer  can observe that for large valueslkofp&(=) is constant and inde-
is proportional tox 1/2k. As the value ok increaseglimit to pendent ok.
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1.0 — We can observésee Fig. 6 that the limit values of the
1 M jamming density, as a function &, are according to previ-
0 8-[] K%an . ous analysis. In fact, fdR=0 we have the classical car park-
—~ . D”Dnnn G 1 ing model, where the jamming densitygg=0.747 59§ 21]
8 0.6+ %%% ] and forR—o the jamming density tends to [112,13. For
T y el ' values of the parametd®/ o between 0 and 1, the size of
Qo 0.4+ ] inner gaps created in the separation of one deposited dimer is
I smaller than %; for this reason such inner gaps cannot be
0.2 , 7 covered in the entire process. As the valuddd increases,
1. the size of the empty gaps also increases and as a conse-
0'00"0 "02 04 06 08 10 quence the jamming density diminishes monotonically be-
tweenpy=0.747 598 ang,=0.5. ForR> o the size of the
R/(R"‘G) inner gaps created in the deposition process is bigger than

20 and can be filled by the incoming dimers. One of the
most interesting features that we can observe in the curve is
given by the finite discontinuities gfg(«), near the integer
values of R/o. The explanation of such discontinuity is
based on the same argument discussed before; the probabil-
éty to fill a gap with size exactly @ is 0. As we increase the
values ofR to R+ dR, the gaps of R, which were generated
in the earliest deposition, will be filled with some finite prob-
ability and the jamming density will be higher than those
orresponding to the integd®/o. As a consequence, the
alue of the jamming density is higher at the right of one
integer value ofR/o and decreases monotonically until the
next integeR/o. At values ofR/o>5 the effect becomes so
small that the discontinuities cannot be detected by simula-
tions. This is due to the fact that the populations of gaps with
size R disminish as the value d® increase.

FIG. 6. Jamming densityg(°) as a function oR/(R+ o). We
can observe the finite discontinuity foR=o,20,30, ... no
(n= intege). The dashed line is drawn as a guide to the eye.

the value ofk is. As a consequence, we can always observ
a crossover between the jamming dengitf~) correspond-
ing to the “real” jamming state, and the jamming density
p'F‘Q(oo) corresponding to the “apparent” jamming state. The
crossover time or the time required by the system to reac
the final state is proportional tok2 We can modify the rate
equation in order to consider this effect by introducing Eq.
(3h), the destruction of the gaps of sizer2provided that a
dimer falls in such a gap with some finite probability. Then
the equation will be modified by adding the term
—aG,(t), where « is the probability that the incoming
dimer falls in such an interval. The solution of the kinetics
equations is in agreement with the simulations results pro-
vided that the probabilityr is equal to 1/R.

To avoid any size effect in our numerical experiment we  |n this paper, we have presented a model for the deposi-
have performed “off-lattice” simulation by using a large tion of hot dimers in the continuum. By means of numerical
value ofk (k=2%) and the length of the lattice in the in- simulation and an analytical approach we have studied the
tervalL =10° to 10° depending on the value & in use. Our  so-called “hot” dimers adsorption in the continuum for fi-
Monte Carlo time unit corresponds totrials of deposition pite flight distanceR. We can develop the kinetic equations
of dimers. The results were averaged over a number &f 10for the gaps distribution function for a particular value of the
samples, depending on the size of the lattice. The simulationsarameterR (R=o¢). The numerical solution of the rate
were carried out at the PARIX parallel computer system withequations is in good agreement with the Monte Carlo simu-
eight nodes. lations results. An apparent jamming state emerges for the

One interesting aspect of the continuum deposition of thﬁ’nteger values of the parametefo as a consequence of the
hot dimer is theR dependence of the jamming density. In the finjte size effect in the adsorption mechanism. This effect is
discrete, the dependence of the jamming coverage Rith  only present in the continuum limit procedure and is due to
given by a power-law6..(=) — 6x(>)[=R™*, where the ex- the presence of gaps of exactlyXize. Those gaps have
ponent isx~0.9 with 6.(«)=1 in one dimension and been covered by the incoming dimers with a probability pro-
x~0.5 with 6.,(«)=0.943 in a two-dimensional square lat- portional to the size of the discrete dimears=1/2k. In the
tice [11]. limit k— o these gaps remain uncovered given the real jam-

In contrast to the simple power-law dependence of thqning densitypr(). The jamming state, as in the discrete,
jamming coverage in the discrete latticED and 2D, the  depend on the parametB; however one of the most inter-
jamming densitypr() for the hot dimer deposition in the esting features, which differentiates between the continuum
continuum exhibits a very rich behavior as a function of thedeposition and the RSA of hot dimers in the lattice, is the
flight distanceR. We have plotted in Fig. Gr(*) VS  piecewise profile that characterizes the jamming density as a

IV. CONCLUSION

R/IR+o. We can observe that, foR=0,20,30,...,n0  function of the flight distanc®. The rich structure observed
with n = integer, the jamming density described a perfectin the profile contains finite discontinuities near the integer
straight line which is given by values ofR=0,20,30, ... no with n integer, which are

explained by the fact that the probability to cover the gaps of
size R by the incoming dimers is strictly 0. For such values
of the parameteR a simple law is obeyed by the jamming
(100  densitypg(®)=R/(R+ o).

pr(*)= 5 for R=0,20,30,... no (n=intege).
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