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We study the one-dimensional hot dimer adsorption~HDA! process in the continuum. Hot dimers are
molecules that dissociate instantaneously after adsorption and the resulting monomers undergo a ballistic flight
up to a distanceR from the deposition place. We analyze the kinetics and jamming via rate equations for the
gap density distribution in the special caseR5s ~the radius of the dimer!, and by means of Monte Carlo
simulation for generalR. The jamming density reveals an interesting dependence on the dissociative separation
distance,R, where discontinuities appear forR5s,2s,3s, . . . ,ns with n 5 integer.
@S1063-651X~96!09806-6#

PACS number~s!: 68.10.Jy, 82.65.2i, 02.50.2r

I. INTRODUCTION

The deposition~or adsorption! of particles on solid sur-
faces is a subject of considerable practical importance. In
many experiments on adhesion of colloidal particles and pro-
teins on solid substrates, the relaxation time scales are much
longer than the times of the formation of the deposit. A well
known example of an irreversible monolayer deposition pro-
cess is the random sequential adsorption~RSA!. This process
is well described in the literature and has been investigated
extensively in recent years@1–7#.

On the other hand, recent scanning tunneling microscopy
~STM! observations@8,9# of adsorption of O2 on Al~111!
have shown that, under certain conditions, oxygen molecules
striking the metal surface not only dissociate instansta-
neously upon adsorption, but dissipate part of their excess
energy in degrees of freedom parallel to the surface. As a
consequence, the resulting monomers fly apart up to a dis-
tanceR before being immobily adsorbed. The experiment
has shown that for a temperatureT5300 K, the traveling
distanceR is, on the average, approximately 40 Å for each
monomer.

This interesting process has been described by using the
random sequential adsorption model@10–19#. Monte Carlo
simulations have been performed to analyze the one- and
two-dimensional~2D! hot dimer adsorption@10,11# and the
results show that both the kinetics and the saturation state are
strongly dependent onR. The analytical treatment of this
dissociative adsorption process has been done in 1D@12,13#.

Numerical simulation has shown that the hot dimer
mechanism considerably enhances the rate of CO2 produc-
tion in the catalyzed oxidation of carbon monoxide@14#. The
influence of such an adsorption mechanism has also been
used to analyze the critical behavior in the monomer-dimer
irreversible phase transition@15#.

Recently, Mendes and Stinchcombe@19# presented a one-
dimensional exact solution for the dissociative adsorption of
dimers, allowing reaction between them. They analyzed the

annihilation (A1A→0) and the coalescence (A1A→A) re-
actions of ‘‘hot’’ species.

Motivated by this vivid interest in the study of this find-
ing, it is instructive to extend the analysis of the hot dimer
adsorption to the continuum deposition. A previous study of
the continuum deposition has been introduced in Ref.@13#,
however the result is restricted only to very large values of
R (R→`).

The analysis of the continuum deposition for finite values
of R is not straighforward, because of the infinite hierarchies
of coupled integro-differential equation for the gaps distribu-
tion density.

In this work we study, by means of the Monte Carlo simu-
lation and~under certain conditions! an analytical approach,
the hot dimers adsorption in the continuum for finite values
of R.

The outline of the rest of the paper is as follows. First, we
describe the model and the general equation that governs the
kinetics of the process. In this section we obtain, as an ex-
ample, the set of rate equations for the special case of
R5s and their numerical solution. After that, the Monte
Carlo simulation scheme is introduced and the continuum
limit approximation is discussed. Finally we present the con-
clusions.

II. THE MODEL

As we described in Ref.@12#, the adsorption of hot dimers
is a dissociative adsorption process determined by two well
definite steps:~a! the deposition of the dimer in at least two
empty sites, and~b! after each successful deposition attempt
the dimer breaks up ‘‘instantaneously’’ in two monomers
that fly up to certain fixed distanceR ~in term of the lattice
constant!. If during the flight one monomer hits another ad-
particle or cluster of particles that is already at rest, the flying
monomer is frozen at the collision point~site!.

Based upon this particular dissociative adsorption pro-
cess, we can extend the model for the adsorption in the con-
tinuum.

Our model considers the deposition of hot dimers in a
one-dimensional infinite line lattice with periodic boundary
condition. The length covered by the dimer is taken equal to*Author to whom correspondence should be addressed.
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2s, wheres is the length covered by one monomer. The
dimers arrive randomly at the line at a ratew per unit time
per unit length. If an incoming dimer is blocked by an ad-
sorbed adparticle, it is removed, otherwise the deposition is
successful. After deposition in a free region, the dimer
breaks up instantaneously and each remaining part flies apart
up to a certain distanceR. If during the flight one monomer
hits another adparticle that is already at rest on the surface,
the flying monomer is frozen at the collision point. The
deposition mechanism seems to be, in some aspect, similar to
the deposition of rolling spheres on the line; such a process
has been analyzed by Viotet al. @20#. However, the similar-
ity is restricted to the fact that, in both cases, particles move
instantaneously from the original landing point to the defini-
tive deposition or adsorption place.

The kinetics of the HDA process is monitored following
the time evolution ofḠR( l̄ , t̄)dl̄, which represents the num-
ber density of gaps with length betweenl̄ and l̄1dl̄ at time
t̄, for a given value ofR. The number density of gaps per
unit length is given by

nR~ t !5E
0

`

GR~ l ,t !dl, ~1!

where, for convenience, we have introduced the dimension-
less variablest5swt̄, l5 l̄ /s, andGR5sḠR .

The density is also related to the fraction of the covered
surface, i.e., the fraction of the line covered by the particles,

rR~ t !512E
0

`

lGR~ l ,t !dl. ~2!

Due to the nature of the deposition process, that is, one
monomer can hit another adparticle or cluster of adparticles
and each gap does not correspond necessarily to one particle,
we haverR(t)ÞnR(t).

The rate equations of the gap distribution function can be
written in a closed form by considering all the ways in which
intervals may be created or destroyed during the hot dimer
deposition process. For a given interval~gap! of length
l.2s, the available length for the insertion~deposition! of a
dimer is the inner interval of lengthl22s ~step a!, see Fig.
1~a!. A number of different situations appear due to the fact
that, after deposition, each monomer flies up to a fixed dis-
tanceR ~step b!. As a consequence, the ways of creation and
destruction of the gaps depend on the relation betweenR and
the length of a given gapl , see Fig. 1~b!. For large values of
R (R→`), the destruction of a gap of lengthl.2s, is fol-
lowed by the creation of a unique inner gap of length
l22s, independent of the value ofl and the place of the
deposition of the dimer. In the other extreme, the case
R50, we have the classical ‘‘car parking problem’’@21#,
where the jamming density is well known
r0(`)50.747598. For finite values ofRÞ0, the destruction
of a given gap of lengthl.2s, can be followed by the
creation of one inner gap limited by the monomers and up to
two more gaps, between the monomers and the particles or
clusters of particles which are already at rest. In the last case,
the number of ways of creation of the gaps with length
l 8, l depend on the relation betweenl andR and the place
of the deposition of the dimer. On the other hand, given that

the probability of an incoming dimer to fall in a gap of
lengthl<2s is strictly zero, such gaps are always created in
the HDA process. However, we have to distinguish three
different possibilities:~i! gaps of lengthl52s, ~ii ! gaps of
length betweens, l,2s, and, finally,~iii ! gaps of length
l,s. In the case~i! the number of gaps of length 2s is
highly increased for small integer values of the parameter
R/s. The reason for such an effect will be discussed below.

According to the definition of our model, the kinetics of
the process is given by the time evolution ofGR( l ,t). To
illustrate the method, we present in the rest of the section the
derivation of the rate equations and their numerical solution
for one particular case,R5s. To simplify the treatment, we
consider, in what follows, that the radius of the dimer takes
the values51. From the argument described below, we ob-
tain the following set of coupled equations:

dGs~ l ,t !

dt
52~ l22!Gs~ l ,t !12E

l13

`

Gs~ l 8,t !dl8 ~ l.2!,

~3a!

dGs~ t !

dt
5E

4

`

~ l 824!Gs~ l 8,t !dl8 ~ l52!, ~3b!

dGs~ l ,t !

dt
5~22 l !Gs~ l12,t !12E

l12

l13

Gs~ l 8,t !dl8

14E
l13

`

Gs~ l 8,t !dl8 ~1, l,2!, ~3c!

dGs~ l ,t !

dt
5 lGs~ l12,t !12E

l13

`

Gs~ l 8,t !dl8 ~0, l,1!.

~3d!

Equation~3a! describes the time evolution of the gap dis-
tribution function for gaps with lengthl.2. These gaps are
destroyed by the deposition of a dimer in thel22 possible
inner place. The creation of such gaps is described by the
second term in the right-hand side of the equation. The factor

FIG. 1. Illustration of the deposition process.~a! The incoming
dimer of size 2s ~heres51) arrives at the line and its center is
deposited in the (l22) possible place.~b! The destruction of a
given gap of lengthl.2 can be followed by the creation of one
inner gap of length 0, l 1<2R limited by the monomers and up to
two more gaps~in the figure we show only one! with length
0< l 2 . Note that one of the monomers in the figure travels a dis-
tancej,R.
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of 2 in the creation term reflects the two possibilities of
breaking a larger interval by inserting a dimer.

Equation~3b! represents the evolution of the gap distribu-
tion function, for a gap of size exactly 2. Due to the fact that
the flight distance of each monomer is between 0 and
R(R51), the gaps of size exactly 2 are always created in the
process by the gaps with lengthl 8 between 4 and̀ , pro-
vided that the incoming dimer falls in an inner interval,
which is located at a distance 2 from one of the borders of
this gap. There arel 824 possibilities to fall in such an in-
terval. It is clear that the probability to destroy the gaps of
length exactly 2 is strictly 0.

Equation ~3c! considers the time evolution of the gaps
with length between (1, l,2). The first term on the right-
hand side of the equation takes into account the creation of
these gaps due to the deposition of the incoming dimer in a
gap with lengthl12, provided that the center of the dimer
falls in an interval of length 22 l located at a distance of 1 of
the border. The next term is due to the contribution of the
gaps with length betweenl12 and l13; the factor of 2
reflects the two possibilities that the dimer falls in this gap.
The last term of this equation has a factor of 4, which de-
notes the four deposition possibilities in gaps with length
bigger thanl13.

Finally, we have the evolution of the gaps smaller than 1.
In this case the contribution of the gaps with lengthl12 is
reflected in the first term of the right-hand side of Eq.~3d!,
where the factorl represents the probability that the incom-
ing dimer falls in these gaps. The following term is given by
the contribution of the gaps with length bigger thanl13.

In order to solve the previous set of coupled integro-
differential equations, we use the standard procedure devel-
oped in Ref.@1#. The solution can be obtained by considering
first the interval larger than 2. Inserting the following ansatz
for Gs( l ,t) in Eq. ~3a!,

Gs~ l ,t !5F~ t !t2e2~ l22!t ~ l.2!, ~4!

and replacing the expresion ofGs( l ,t) in Eqs.~3b!, ~3c!, and
~3d!, we can obtain the following expression for the com-
plete set of equations:

Gs~ l ,t !5E
0

t

F~m!e22mdm ~ l52!, ~5a!

Gs~ l ,t !5E
0

t

mF~m!e2 lm@2~11m1e2m!2 lm#dm

~1, l,2!, ~5b!

Gs~ l ,t !5E
0

t

me2 lm~2e2m1 lm!dm ~0, l,1!, ~5c!

whereF(t) is given by

F~ t !5e22*0
t
@~12e23m!/m# dm. ~6!

We can calculate, by using the expression ofGs( l ,t) , the
corresponding fraction of the line uncovered by particles
Hi(t), which is independent ofl , as

H0~ t !5F~ t !~2t11! ~ l.2!, ~7a!

Hs~ t !52E
0

t

F~m!e22mdm ~ l52!, ~7b!

H1~ t !5E
0

t

mF~m!@2~11m1e2m!I 1~1,2,m!

2mI 2~1,2,m!#dm ~1, l,2!, ~7c!

H2~ t !5E
0

t

mF~m!@2e2mI 1~0,1,m!

1mI 2~0,1,m!#dm ~0, l,1!, ~7d!

whereI n(a,b,t) is defined as

I n~a,b,t !5E
a

b

l ne2 l tdl. ~8!

To calculate the density we use the expression given in
Eq. ~2!. Then we have

rs~ t !512@H0~ t !1Hs~ t !1H1~ t !1H2~ t !#. ~9!

In Fig. 2 we show the numerical solution for the density
and the fraction of the uncovered surfaceHi(t) as a function
of time t ~line! compare with the Monte Carlo simulation
results~dots!. The simulation procedure is described in the
next section. We can observe an excellent agreement be-
tween both methods. The jamming density is obtained by
solving numerically Eq. ~9! for very large values of
t(t→`); the result isrs(`)51/2.

The asymptotic approach to the saturation density is
shown in Fig. 3, and we can observe that the dependence of
rs(`)2rs(t) is proportional tot21 as in the clasical con-
tinuum deposition@1#. We can conclude that the asymptotic
behavior does not depend on the ‘‘hot’’ adsorption mecha-
nism. In principle, the general solution could be obtained by
solving the set of coupled integro-differential equations
which governed the time evolution ofGR( l ,t), however, it is
necessary to derive a different set of equations for each in-

FIG. 2. Gaps distribution functions~GDF! Hi(t) and density
rs(t), as a function of time forR5s. The numerical solutions of
the rate equations~line! compare with Monte Carlo simulations
~symbols!.

54 619CONTINUUM DEPOSITION OF HOT DIMERS IN ONE DIMENSION



terval defined by successive integer values ofR/s. As a
consequence, the treatment of the problem by solving the
rate equation for larger values ofR/s becomes impractical.
For this reason we have used the Monte Carlo simulations, as
an alternative, to analyze the process for generalR.

III. MONTE CARLO SIMULATION SCHEME

The Monte Carlo simulation of the ‘‘hot’’ dimer deposi-
tion in the continuum is analyzed by using the standard pro-
cedure described in Ref.@4#. For the continuum deposition of
the dimer of size 2s, on a 1D line with periodic boundary
condition, it is convenient to introduce the corresponding
lattice model, where the dimer is replaced by a ‘‘2k-mer.’’
Thus, we introduce a lattice of spacingb5s/k, and allow
deposition only at sites where the incoming particle will co-
incide exactly with the underlying lattice, covering 2kb
units. The deposition frequency per site will bew. The depo-
sition attempts are successful if the incoming particles do not
overlap any particles already in the deposit. Each successful
deposition attempt of the 2k-mers is followed by an instan-
taneous fragmentation in two parts of lengthkb and each of
them flies up to a certain distanceR, as we described above.
In the limit k→` (b→0), we obtain the continuum deposi-
tion. In our simulation, we keep thek-mer notation as before
and define the dimensionless timet5ws t̄. In the hot depo-
sition we also observe that the jamming coverage, in the
lattice, approached exponentially for large timet. On the
other hand, for the continuum we have observed that in the
asymptotic limit the jamming density approached as a
power-law,}t21. The crossover between these two behav-
iors is similar to the classical RSA problem and is not ana-
lyzed in this work. An interesting feature, which is only a
characteristic of the hot dimer deposition mechanism, ap-
pears in the approximation to the continuum limit (k→`).
In the filling process, the early depositions determine a
strongly correlated configuration. In fact, at the beginning of
the process, most of the dimers arrive at the empty line, and
after fragmentation each monomer flies up to exactly a dis-
tance ofR, independently ofk, increasing the population of
gaps by exactly 2R. In the case ofR5kb, the size of these
gaps coincides with the size of the dimer. The probability to
cover such empty gaps of exactly 2kb ~the size of the dimer!
is proportional to}1/2k. As the value ofk increases~limit to

the continuum! the probability to cover the gaps diminishes,
but is always finite. As a consequence, in the approach to the
asymptotic limit (t→`) there is, always, a crossover be-
tween the jamming density corresponding to the continuum
rR(`) and the jamming density obtained in the limit proce-
dure rR

k (`); see Fig. 4. We can see in Fig. 5 that for the
jamming densityrR

k (`), plotted vs 1/k for different values
of R, it is possible to observe thatrR

k (`) is independent of
k, for large values of this parameter.

The second jamming state is produced by the lattice
aproximation in the limit procedure, and only for integer
values ofR/s(RÞ0) is the effect present. This is because
only in this case is the formation of gaps of size exactly
2kb possible. We can conclude that this ‘‘jamming state’’ is
a finite size effect due to the fact that in our limit procedure,
for any finite value of the parameterk, we have a finite
probability to cover the gap of size 2kb, no matter how large

FIG. 3. Asymptotic regime approach forR5s. The slope of the
curve}t21 does not depend on the hot adsorption mechanism. FIG. 4. Time dependence of the density for the caseR5s and

for different values ofk (k5 2, 4, 8, 16, 32, 64, 128, 256, 512!. The
topmost datum is 2, and the lower data set corresponds to the de-
creasingk values. The dashed curve corresponds to the ‘‘off-
lattice’’ simulation. We can clearly observe the jamming state~ar-
rows! corresponding tors(`)50.5 andrs

k (`)50.7999 for large
values ofk.

FIG. 5. Size dependence of the second jamming density
rR
k (`) plotted vs 1/k for different values of the parameterR. We
can observe that for large values ofk, rR

k (`) is constant and inde-
pendent ofk.
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the value ofk is. As a consequence, we can always observe
a crossover between the jamming densityrR(`) correspond-
ing to the ‘‘real’’ jamming state, and the jamming density
rR
k (`) corresponding to the ‘‘apparent’’ jamming state. The
crossover time or the time required by the system to reach
the final state is proportional to 2k. We can modify the rate
equation in order to consider this effect by introducing Eq.
~3b!, the destruction of the gaps of size 2s, provided that a
dimer falls in such a gap with some finite probability. Then
the equation will be modified by adding the term
2aGs(t), where a is the probability that the incoming
dimer falls in such an interval. The solution of the kinetics
equations is in agreement with the simulations results pro-
vided that the probabilitya is equal to 1/2k.

To avoid any size effect in our numerical experiment we
have performed ‘‘off-lattice’’ simulation by using a large
value of k (k5248) and the length of the lattice in the in-
tervalL5105 to 106 depending on the value ofR in use. Our
Monte Carlo time unit corresponds toL trials of deposition
of dimers. The results were averaged over a number of 102

samples, depending on the size of the lattice. The simulations
were carried out at the PARIX parallel computer system with
eight nodes.

One interesting aspect of the continuum deposition of the
hot dimer is theR dependence of the jamming density. In the
discrete, the dependence of the jamming coverage withR is
given by a power-lawuu`(`)2uR(`)u}R2x, where the ex-
ponent is x'0.9 with u`(`)51 in one dimension and
x'0.5 with u`(`)50.943 in a two-dimensional square lat-
tice @11#.

In contrast to the simple power-law dependence of the
jamming coverage in the discrete lattice~1D and 2D!, the
jamming densityrR(`) for the hot dimer deposition in the
continuum exhibits a very rich behavior as a function of the
flight distanceR. We have plotted in Fig. 6rR(`) vs
R/R1s. We can observe that, forR5s,2s,3s, . . . ,ns
with n 5 integer, the jamming density described a perfect
straight line which is given by

rR~`!5
R

R1s
for R5s,2s,3s, . . . ,ns ~n5 integer!.

~10!

We can observe~see Fig. 6! that the limit values of the
jamming density, as a function ofR, are according to previ-
ous analysis. In fact, forR50 we have the classical car park-
ing model, where the jamming density isr050.747 598@21#
and forR→` the jamming density tends to 1@12,13#. For
values of the parameterR/s between 0 and 1, the size of
inner gaps created in the separation of one deposited dimer is
smaller than 2s; for this reason such inner gaps cannot be
covered in the entire process. As the value ofR/s increases,
the size of the empty gaps also increases and as a conse-
quence the jamming density diminishes monotonically be-
tweenr050.747 598 andrs50.5. ForR.s the size of the
inner gaps created in the deposition process is bigger than
2s and can be filled by the incoming dimers. One of the
most interesting features that we can observe in the curve is
given by the finite discontinuities ofrR(`), near the integer
values ofR/s. The explanation of such discontinuity is
based on the same argument discussed before; the probabil-
ity to fill a gap with size exactly 2s is 0. As we increase the
values ofR toR1dR, the gaps of 2R, which were generated
in the earliest deposition, will be filled with some finite prob-
ability and the jamming density will be higher than those
corresponding to the integerR/s. As a consequence, the
value of the jamming density is higher at the right of one
integer value ofR/s and decreases monotonically until the
next integerR/s. At values ofR/s.5 the effect becomes so
small that the discontinuities cannot be detected by simula-
tions. This is due to the fact that the populations of gaps with
size 2R disminish as the value ofR increase.

IV. CONCLUSION

In this paper, we have presented a model for the deposi-
tion of hot dimers in the continuum. By means of numerical
simulation and an analytical approach we have studied the
so-called ‘‘hot’’ dimers adsorption in the continuum for fi-
nite flight distanceR. We can develop the kinetic equations
for the gaps distribution function for a particular value of the
parameterR (R5s). The numerical solution of the rate
equations is in good agreement with the Monte Carlo simu-
lations results. An apparent jamming state emerges for the
integer values of the parameterR/s as a consequence of the
finite size effect in the adsorption mechanism. This effect is
only present in the continuum limit procedure and is due to
the presence of gaps of exactly 2s size. Those gaps have
been covered by the incoming dimers with a probability pro-
portional to the size of the discrete dimersa51/2k. In the
limit k→` these gaps remain uncovered given the real jam-
ming densityrR(`). The jamming state, as in the discrete,
depend on the parameterR, however one of the most inter-
esting features, which differentiates between the continuum
deposition and the RSA of hot dimers in the lattice, is the
piecewise profile that characterizes the jamming density as a
function of the flight distanceR. The rich structure observed
in the profile contains finite discontinuities near the integer
values ofR5s,2s,3s, . . . ,ns with n integer, which are
explained by the fact that the probability to cover the gaps of
size 2R by the incoming dimers is strictly 0. For such values
of the parameterR a simple law is obeyed by the jamming
densityrR(`)5R/(R1s).

FIG. 6. Jamming densityrR(`) as a function ofR/(R1s). We
can observe the finite discontinuity forR5s,2s,3s, . . . ,ns
(n5 integer!. The dashed line is drawn as a guide to the eye.
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